\(\int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec (c+d x) \, dx\) [78]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 66 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\frac {2 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a B \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \]

[Out]

2*A*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d+2*a*B*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {3060, 2852, 212} \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\frac {2 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 a B \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x],x]

[Out]

(2*Sqrt[a]*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a*B*Sin[c + d*x])/(d*Sqrt[a + a*
Cos[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a B \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+A \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx \\ & = \frac {2 a B \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}-\frac {(2 a A) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {2 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a B \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (\sqrt {2} A \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 B \sin \left (\frac {1}{2} (c+d x)\right )\right )}{d} \]

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x],x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(Sqrt[2]*A*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]] + 2*B*Sin[(c + d*x)/
2]))/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(218\) vs. \(2(58)=116\).

Time = 3.71 (sec) , antiderivative size = 219, normalized size of antiderivative = 3.32

method result size
default \(\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +A \sqrt {2}\, \ln \left (-\frac {2 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +4 B \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right ) \sqrt {2}}{2 \sqrt {a}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(219\)
parts \(\frac {A \sqrt {a}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )+\ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}+\frac {2 B a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2}}{\sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(227\)

[In]

int((a+cos(d*x+c)*a)^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c),x,method=_RETURNVERBOSE)

[Out]

1/2/a^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*2^(1/2)*ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(
2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+A*2^(1/2)*ln(-2/(2*cos(1/2
*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+4*B*
(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/sin(1/2*d*x+1/2*c)*2^(1/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 127 vs. \(2 (58) = 116\).

Time = 0.32 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.92 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\frac {{\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} B \sin \left (d x + c\right )}{2 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c),x, algorithm="fricas")

[Out]

1/2*((A*cos(d*x + c) + A)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt
(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*sqrt(a*cos(d*x + c) + a)*B*s
in(d*x + c))/(d*cos(d*x + c) + d)

Sympy [F]

\[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\int \sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + B \cos {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}\, dx \]

[In]

integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))*sec(d*x+c),x)

[Out]

Integral(sqrt(a*(cos(c + d*x) + 1))*(A + B*cos(c + d*x))*sec(c + d*x), x)

Maxima [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.32 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\frac {2 \, \sqrt {2} B \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{d} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c),x, algorithm="maxima")

[Out]

2*sqrt(2)*B*sqrt(a)*sin(1/2*d*x + 1/2*c)/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.35 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec (c+d x) \, dx=-\frac {\sqrt {2} {\left (\sqrt {2} A \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) - 4 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} \sqrt {a}}{2 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*(sqrt(2)*A*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c)))*
sgn(cos(1/2*d*x + 1/2*c)) - 4*B*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{\cos \left (c+d\,x\right )} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x),x)

[Out]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x), x)